Technical Note: Quantitative long-term measurements of VOC concentrations by PTR-MS – measurement, calibration, and volume mixing ratio calculation methods
نویسندگان
چکیده
Proton transfer reaction mass spectrometry (PTRMS) is a technique for online measurements of atmospheric concentrations, or volume mixing ratios, of volatile organic compounds (VOCs). This paper gives a detailed description of our measurement, calibration, and volume mixing ratio calculation methods, which have been designed for longterm stand-alone field measurements by PTR-MS. The PTRMS instrument has to be calibrated regularly with a gas standard to ensure the accuracy needed in atmospheric VOC measurements. We introduce a novel method for determining an instrument specific relative transmission curve using information obtained from a calibration. This curve enables consistent mixing ratio calculation for VOCs not present in a calibration gas standard. Our method proved to be practical, systematic, and sensitive enough to capture changes in the transmission over time. We also propose a new approach to considering the abundance of H3OH2O ions in mixing ratio calculation. The approach takes into account the difference in the transmission efficiencies for H3O and H3OH2O ions. To illustrate the functionality of our measurement, calibration, and calculation methods, we present a one-month period of ambient mixing ratio data measured in a boreal forest ecosystem at the SMEAR II station in southern Finland. During the measurement period 27 March– 26 April 2007, the hourly averages of the mixing ratios were 0.051–0.57 ppbv for formaldehyde, 0.19–3.1 ppbv for methanol, 0.038–0.39 ppbv for benzene, and 0.020–1.3 ppbv Correspondence to: R. Taipale ([email protected]) for monoterpenes. The detection limits for the hourly averages were 0.020, 0.060, 0.0036, and 0.0092 ppbv, respectively.
منابع مشابه
Disjunct Eddy Covariance Measurements of Volatile Organic Compound Fluxes Using Proton Transfer Reaction Mass Spectrometry
Volatile organic compounds (VOCs) are emitted into the atmosphere from natural and anthropogenic sources, vegetation being the dominant source on a global scale. Some of these reactive compounds are deemed major contributors or inhibitors to aerosol particle formation and growth, thus making VOC measurements essential for current climate change research. This thesis discusses ecosystem scale VO...
متن کاملTechnical Note: Determination of formaldehyde mixing ratios in air with PTR-MS: laboratory experiments and field measurements
Formaldehyde (HCHO), the most abundant carbonyl compound in the atmosphere, is generated as an intermediate product in the oxidation of nonmethane hydrocarbons. Proton transfer reaction mass spectrometry (PTR-MS) has the capability to detect HCHO from ion signals at m/z 31 with high time-resolution. However, the detection sensitivity is low compared to other detectable species, and is considera...
متن کاملComparison of aromatic hydrocarbon measurements made by PTR-MS, DOAS and GC-FID during the MCMA 2003 Field Experiment
A comparison of aromatic hydrocarbon measurements is reported for the CENICA supersite in the district of Iztapalapa during the Mexico City Metropolitan Area field experiment in April 2003 (MCMA 2003). Data from three different measurement methods were compared: a Proton Transfer Reaction Mass Spectrometer (PTR-MS), long path measurements using a UV Differential Optical Absorption Spectrometer ...
متن کاملComparison of aromatic hydrocarbon measurements made by PTR-MS, DOAS and GC-FID during the MCMA
A comparison of aromatic hydrocarbon measurements is reported for the CENICA supersite in the district of Iztapalapa during the Mexico City Metropolitan Area field experiment in April 2003 (MCMA 2003). Data from three different measurement methods were compared: a Proton Transfer Reaction Mass Spectrometer (PTR-MS), long path measurements using a UV Differential Optical Absorption Spectrometer ...
متن کاملMeasurements of hydrogen sulfide (H2S) using PTR-MS: calibration, humidity dependence, inter-comparison and results from field studies in an oil and gas production region
Natural gas production is associated with emissions of several trace gases, some of them classified as air toxics. While volatile organic compounds (VOCs) have received much attention, hydrogen sulfide (H2S) can also be of concern due to the known health impacts of exposure to this hazardous air pollutant. Here, we present quantitative, fast time-response measurements of H2S using protontransfe...
متن کامل